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ABSTRACT

Equations governing the motion of a specific class of singularities of the Euler equation in

the extended complex spatial domain are derived. Under some assmnptions, it is shown how

this motion is dictated by the smooth part of the complex velocity at a singular point in the

unphysieal domain. These results are used to relate the ,notion of complex singularities to

the stability of steady solutions of the Euler equation. A sufficient condition for instability

is conjectured. Several examples are presented to demonstrate the efiqcacy of this sufficient

condition which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye.
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1. INTRODUCTION

Singularities of the Euler equation for inviscid incompressible flow have been studied ex-

tensively for many years. An important question that remains quite controversial is whether,

in three dimensions, an Euler flow can develop a singularity in finite time when the initial

conditions are smooth (see Pumir & Siggia 1, Majda 2, Kerr 3, Brachet et al 4 and the references

therein). While this paper does not address this controversy directly, except within a narrow

class of singularities under restrictive assumptions, we expect that tlle approach presented

here may help in a fuller resolution of this problem. All previous singularity studies have

been limited to examining solutions to the Euler equation in tlle real (physical) spatial do-

main, though in some cases the singularity presence in the complex unphysical plane was

deduced from monitoring the Fourier coefficients.

For simpler Euler flows with sharp discontinuities like the Kelvin-Hehnholtz problem,

previous work by Moore 5'6, Caflisch & Orlenna 7 and Cowley et al s have shown the advan-

tage of studying the equations in the complex unphysical plane. In that case, the singularity

formation in the physical domain can be understood in terms of two processes: (a) instanta-

neous singularity formation at some points in the complex unphysical domain at the initial

time, and (b) the motion of such complex singularities towards the physical domain. The

question of finite time singularities in the real domain then becomes a question of whether

such singularities approaching the real domain actually impinge it in finite time. Moore 5'G

and Caflisch & Orlenna 7 have shown that for specific symmetric initial conditions, the sin-

gularities form on the imaginary axis after a finite time, which then move towards the origin

leading to a singularity formation on the real axis. However, recent work by Cowley et al s

suggests that the Moore singularity s,6 actually forms at the initial instant of time at points

off the imaginary axis. Later on, some of these singularities merge in pairs on the imaginary

axis before traveling towards the origin (which is part of the real domain). Indeed, it appears

that in a wide class of differential equations including the familiar one-dimensional inviscid

Burger's equation, singularities that show up later in the real domain are either present at

some complex location initially or are formed at the initial instant of time. Such singulari-

ties typically form at points (including infinity) in the complex spatial plane where a regular

perturbation series in time (for early times) becomes disordered. In some cases, it is found s'9

that singularities are born at infinity in the sense that the singularity location in the finite

spatial plane recedes to infinity as t _ 0 +. The study of complex singularities appears to

have been a fruitful exercise that transcends the question of finite time singularity. Indeed,

recent work on an interfaclal evolution problem by Tanveer m suggests that this may be an

important step in understanding the effect of small regularization on an otherwise ill-posed

time-evolving flow in the physical domain.



Despite successes in each of the cases cited above, and perhaps in other cases unknown

to the authors, tile problems were reducible to one independent space-like variable besides

time. W% are unaware of attempts to generalize these ideas for multiple spatial variables

as appears necessary for studying a general Euler flow. Here, we study a class of moving

singularities of the Euler equation whose form appears to remain unchanged with time, with

tile expectation that, for certain other initial conditions, the process (a) described in the last

paragraph leads to the formation of complex singularities of this form when they/_re not

present initially.

In this paper, we provide analytical evidence to show how each singularity of a specific

type moves with the smooth part of the complex velocity field evaluated at that point. Of

course, in a simpler vein, it has long been known that point vortex singularities in the physical

domain move with the local velocity at the singularity location 11. However, with certain

assumptions, this result is generalizable to singularity motion in the complex unphysical

plane as well. This result is used to conjecture sufficient conditions for the instability of a

steady solution of the Euler equation. We present two conjectures. Conjecture 1 addresses

I ° ethe absolute instability of any steady Euler flow with a stagnation point. Conjectur, 2

addresses instability in tile Langrangian sense; when the conditions of this conjecture hold,

there exist disturbances that grow as we follow some fluid particle.

Several applications to the hydrodynamic stability of inviscid flows in an infinite or peri-

odic domain , which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye

are made to illustrate tile use of Conjecture 1 to determine the absolute instability of these

flOWS. ::

2. MATHEMATICAL EQUATIONS IN THE COMPLEXIFIED DOMAIN

Consider the Euler equation for the motion of an invisicid fluid where the vorticity _(2, t)

and the velocity if(2", t) are determined by

_t + _. v_ - o3. vff = o (1)

V.g=0

V xff=a3

Each of the components of tile above equations can be put in the form

F(xl, x2, x3, _) = 0

(2)

(a)

(4)

where 2" = (Xl, x2, x3). In the case of 27r periodicity in each direction, if we assume that each

coefficient Cjkt in tile following representation of F

j,k,1

(r,)
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satisfies the relation

ICjk_l < I( e-6(ljl+lkt+l_l) (6)

for some constant K and _ which are independent of j, k and l, then it follows that (4) will

hold for complex xl, x.2 and x3 when lira xl], llrn x21 and [lrn x3[ are each small. Since the

right hand side of (4) is zero, which is an analytic function of Zl, z2 and z3 in the complex

domain, it follows that (4) holds for all complex 2_. The condition (6) will certaiuly hold for

the Fourier series coefficient of each component of equation (1), (2) and (3) if each component

of t7 and o3 and its derivatives satisfy such a condition. We restrict our attention to cases

when this is true at some early time, which we assume is possible for a certain subclass of

initial conditions. Then we arrive at the conclusion that each of equations (1), (2) and (3)

hold for complex _ (i.e. each component is complex ). However, since the right hand side

of each component of (1), (2) and (3) is zero, which is analytic for all complex _ and t, it

follows that (1), (2) and (3) will hold for all :g and t. The singularities of ff and aJ are those

that are consistent with the solutions of (1), (2) and (3) in the complex :7_domain. The

same arguments hold even when the periods in zi , z2 and za are not the same or when the

geometry is infinite in some directions and periodic in others.

We examine a certain kind of initial conditions for which the velocity and vorticity are

each real and analytic everywhere for real 2", but have complex singularities at a singularity

surface determined by

d(._, O)=0 (7)

where d is an analytic function of each component of _ that is real valued and greater than 0

for real _. Here d is also a function of t and its time evolution equation will be derived later.

We also require the non-degeneracy condition that Vd -_ 0 where d = 0'. We consider

initial conditions that can be decomposed into

ff(._,O) = ff_('2,O) + f(d(2, O)) _(_,0) (8)

where

o_(2-, O) = c3,(2-,0) + f'(d(£,O))/7(:F, O) (9)

f(d)---d _ (10)

with 0 < a < 1. Thus the initial vorticity blows up at the complex singular points, though

the velocity is finite. In (8) and (9), we assume that each of ff_(2_,0), a3_(Y, 0), ,T(_7,0) and

/7(2, 0) are analytic functions of 2 and that they are real valued for real _7. Thus the initial

tWe have shown later that this condition is satisfied at later times once satisfied initially.



conditions (8) and (9) correspondto smooth initial conditions in the real domain. We also
require that

v • _(_,o) = o

and

(11)

v × _s(_,0)=_s(_,0) (12)

V x If _'(£, 0)] = f'_(£, O)

Now, for t > 0, we seek solutions to (1)- (3) of the form

if(2, t) = ff_(£,t) + f(d(£,t)) ¢(£,t)

_(,g,t) = (:s(_,t) + f'(d(_,t)) y(_,,)

From (2) and (3), we get the following relations:

V.ffs+f'[fv.(+c_.Vd] =0

Vxffs+f'[fVx_+Vdx_] =aTs+f'ff

If we now require that

an d

(13)

(14)

(15)

(16)

(17)

V._s =0 (18)

Vxffs=a_s (19)

_s, + as. vzs-z_, ws = 0 (20)

then the relations (16) and (17) imply that

fv. ¢-I- 4'- Vd = 0 (21)

fv x (+ Vd x _':/7 (22)
f,

In addition, the substitution of (14) and (15) into (1), with the use of relations (20) - (22),

yields

f"ff[dt + ffs " Vd] + f' [fie

-d_,. v ,0 - (/7.v) _,

.f_ f,, f
+ ff_. Vff- p---_--V. ¢ + f(¢. V) ff + ?(,_. %7)

f, (_s " V) i- ¢f(Vd) . (V × q-')- fff. V = 0 (23)

4
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Now notice that if we choose to evolve d(£, t) according to

d, + G" 27 d = 0 (24)

then
f2f,, f

gt + G" V/7-/7--_V. ¢ + f(c i. V)/7 + 77(¢. V) a3, = ¢(a_, • V d)

f
+ (/7.27) if, + 77 (03,. V) ¢+ ,_f(Vd). (V × q_)+ f/7.27¢ (25)

The existence of/7 satisfying (21), (22) and (25) for small enough time follows from the

existence of ,3 and o7,, each satisfying (1)- (3), and of d satisfying (24), since a3- _3, = f'(d)/7.

We also notice that the coefficients in (21),(22) and (25) are continuous even at d = 0.

Therefore, it appears reasonable to assume that for small enough time, with appropriately

regular initial data, such a solution is C a in x_, x2 and xa at d = 0 in the extended complex

domain. Since, (24) implies that d > 0 in the real domain, once it is so initially, it follows

that such a solution/7 will be real and analytic in the real domain for sufficiently small t

since it is so initially. Notice that if we were to choose d_ + G • Vd :/: 0 at d = 0, then the

resulting evolution equation for/7 would contain singular coefficients in a7 at the singularity

surface d = 0, which would preclude a C 1 solution for/7 at d = 0. Indeed for a general choice,

/7 is not even expected to be finite at d = 0.

Despite the choice (24) for the evolution of d - which results in (25) having C _ coefficients

when d = 0 - we cannot rule out the possibility that the system of nonlinear evolution

equations for ca,, /7 and d develops spontaneous singularities after a finite time. Hence,

global existence in time cannot be expected in general. However, we assume that there

exists a nontrivial subclass of initial conditions so that no spontaneous singularity develops

in the complex domain for/7, ¢, if, or a3s, other than a weak singularity of/7 and Cat d = 0

(in the sense that/Tis C _ but not analytic). In that case, the continuity of/7 at d -- 0 implies

that at later times, the singularity of _3 is still determined by

d(i,t) = 0 (26)

where f' is singular. Writing (24) in the characteristic form, it is clear that (26) will be

satisfied for points :_0(t) determined by

d_o(t)
dt -G(£o(t),t) (27)

with the initial condition 2"0(0) satisfying the constraint that

(28)

5



Thus, each point on tile singularity surface moves with the speed if, evaluated at that point.

However, g, is the smooth part of the vector field t7 at d = 0 in the complex :F plane, which

means the location of complex singularities of the type considered here can be deterlnined

without having to calculate t7(2, t) from (25). Furthermore, with the assumption on the

smoothness of G and continuity of /7 for all time, any singularity of this kind can only

approach the physical domain without actually impinging it in finite time. This can be

deduced from (24) by putting it in the characteristic form and noting that G is real in the

real domain and d(Z', 0) > 0 in the real physical domain. Furthermore, if a flow has a real

point (say the origin, without loss of generality) where if, = 0 with a velocity gradient tensor

Tkj - _ independent of time, then replacing G in (27) by T 2- shows that a complex
-- Ox_

singularity can only approach the physical domain exponentially in time. This observation

may be relevant to the numerical calculation of Brachet et al 4 in the Taylor-Green problem,

where they note an exponential approach of a singularity towards the physical domah_.

Ilowever, since the deformation tensor is traceless, because of the divergence condition, it is

clear that only a restricted set of points on the initial singularity surface are a subset of the

complex stable manifold of the fixed point f.

Equation (27) is convenient since it shows that one need not solve for p-_(i, t) to determine

the singularity location in the complex plane even though one needs to determine ff_(._, t)

in the complex plane. When exact solutions are known for tT_, whi& may be steady or

unsteady, this poses no problems; however, when the solution is only determined numerically

in the real domain, one cannot expect to determine ff_ in the complex plane through Fourier

extrapolation, since such a procedure is ill-posed. In such a case, the solutions have to be

determined numerically, directly in the complex plane. This will be the subject of another

paper. However, if the singularities are close to the physical domain, it is possible to obtain

complex singularity trajectories directly from ff_ in the real domain. This can be seen by

decomposing J0(t) = x(t) + i_7(t), into its real and imaginary parts and taking the real and

imaginary part of (27) in the limit of small g. We then get

dx (29)
-g =

dff _, -_--= y (30)
dt

Equations (29) and (30) are the approximate singularity trajectory equations when a complex

singularity is close to the physical domain. In this case, one needs ff_ and its gradient in only

the real domain, which can be determined numerically.

IComplex stable manifold of a real fixed point of (27) is defined as the set of complex initial conditions

Y'0(0) such that _0(t), satisfying (27), tends to the fixed point as t _ oc.



Once the singularity locations are determined, one can determine/7(£0(t), t) and Vd(_o(t), t)

in terms of a relatively simple system of ordinary differential equations, as will be derived

shortly. These quantities are of interest since for a point £ sufficiently close to io(t) (so that

d is small) but not on tile singularity surface, we have

For brevity of notation, we define

Then,

and (22) implies that

X(t) = vd(_o(t),t)

B(t) = q-_£o(t),t)

C(t) = p-_£o(t),t)

it is clear that, since d(£o(t),t) = 0 and each of f, f/f'

X._=0

d×_=d

It follows that

(31)

(32)

(33)

(34)

are zero at d = 0, then (21)

(35)

(36)

O x X= (X. X)_ (37)

Furthermore, it is clear that (25) implies that

dO _ (_, e{)/? + TO (38)
dt

where T is a second rank tensor whose elements are defined by

c3u.j (:39)
Tjk- Ozk

Assuming e{./_ -J=0 ¶ we get from (37) that

dO _ $C (40)
dt

where S is a second rank tensor whose elements are given by

G.X
Sjk = Tjk + ejk,Al ,_. _ (41)

¶Note that it is possible for A. A = 0 without A being zero since the dot product defined here involves
no complex conjugate. However, this is not so if ,4 is real or purely imaginary.



given that ¢jkt is the usual Levi-Civita tensor and the Einstein summation convention oil

repeated indices has been used.

We now argue that/t remains nouzero when initially nonzero. By taking the gradient of

(24), it is clear that

dA _T+_ (42)
dt

where the + superscript refers to the transpose of T defined by (39). Therefore, the only

way for/l to be zero in finite time is if the elements of the tensor T blow up in finite time.

If gs(g, t)is smooth for all times and grows at infinlty (for an unbounded domain) no faster

than linearly in 2-, then clearly T(2"0(t),t) cannot blow up in finite time. Thus, /_ cannot

be zero in finite time when initially nonzero. Equations (40) and (42) form a closed system

of equations for/_ and C, and thus for Vd(2o(t),t) and ff(f:o(t),t). This system of ordinary

differential equations can be solved numerically Once if, and its spatial derivatives are known

in the complex plane. In the limiting case of a singularity approaching the physical domain,

further simplifications are possible making it feasible to calculate/; and (_ in an approximate

manner from knowledge of ffs and its gradient in the real domain only.

The motion of complex singularities of vorticity is significant since its approach towards

the physical domain can be associated with the appearance of small scale structures at

places in the real domain that are closest to the complex singularities. Furthermore, it is

clear that the location of initial singularities in the complex plane is related to the data

specification in the real domain in an ill-posed way; i.e., one can specify data in the real

domain with arbitrary but finite precision, yet one cannot nail down the singularity location

in the complex spatial domain to any precision. 5%t, if the complex singularities approach

the physical domain along some trajectories, one can explain the sensitivity of the later time

evolution in the physical domain to initial conditions. One can conceivably start with a

random distribution of singularities in the complex domain and generate an understanding

of where and when in a physical flow one can expect fine scale structures where viscosity is

important. The full time-dependent calculation will be the subject of a future investigation.

3. POSSIBLE IMPLICATIONS FOR THE HYDRODYNAMIC STABILITY

OF STEADY FLOWS

In order for a flow to be stable, any disturbance to a basic steady flow cannot grow

without bound as t --* _. A flow will be considered absolutely unstable here if there is a

continual growth of disturbance vorticity at some fixed Eulerian point in the flow field. It

will be considered unstable in a Langrangian sense if there exists a disturbance that grows

at some real point that moves with the steady flow.

If we consider a basic steady flow, and associate the steady flow velocity and vorticity with



ff=(:_)and _=(_), respectively,asdescribedin the last section,we canconsidersuperposition

of an initial disturbancesothat the initial condition isof theform (8) and (9). Our arguments

in the last sectionsuggestthat any point :g0(t)on the singularity surfaced(_o(t), t) = 0 will

move according to (27). Since if= is now a steady flow, (27) reduces to

d2o
a - <(io(0) (43)

When a singularity continually moves closer towards the physical domain, one can expect

smaller and smaller scales to be amplified in the physical domain at some physical point in

the immediate vicinity of the complex singularity. More precisely, in the limit of a complex

singularity approaching the real domain, its distance from the real domain will be of the same

order as the small scales generated in the real domain. As discussed before, singularities of

the form considered here can at best approach the physical domain continually without

actually impinging it in finite time.

The relevant question, as far as hydrodynamic stability in the absolute sense is concerned,

is whether the disturbance vorticity f'(d(_, t))/7(_, t) grows indefinitely with t at some real

point S'. Since d can never be zero in the real domain and must be bounded below by the

smallest value of d on the real domain at the initial time (which follows from (24)), it is clear

that the growth of disturbance vorticity will depend on the growth of/7 in the real domain.

We will now show that if there is a trajectory f'0(t) determined from (43) that asymptotes

to some real fixed _s as t _ _, then it is possible to choose a disturbance such that

p-'('Yo(t), t) grows exponentially in time.

Without any loss of generality, we will choose 2s = 0. Then, according to the given

condition, there exists an £0(t) such that it approaches the origin as t _ (x_. Near the

origin, i.e. the stagnation point, it is clear that

ff=(g-) ,-,-, T_ (44)

where T is now a constant matrix. Then according to (43) and (44), for t > to (where to

is sufficiently large), _'0(t) is determined approximately by

d20
- T :F0 (45)

dt

According to our condition of approach to the origin, T must have at least one eigenvalue o"

with a negative real part. We choose ;[0(t0) to be in the eigenspace corresponding to a. If o

is real, _0(t0) will be chosen to be completely imaginary. Whatever the case, we have

 0(t) :  o(t0) (46)

9



Then, if wechoose-A(t0)= (to be in the eigenspace of T + corresponding to tile eigenvalue

o-, according to (42), it follows that

/_(t) =re -_0-t°) (47)

From (46) and (47), it is clear that ,4-a_0 is bounded as t -+ oo. Equation (40) now holds

where the expression (41) for Sjk is given by

_d "_ (48)

Clear]y, since (is a left eigenvector of T (i.e. an eigenvector of T+), it is clear from (48) that

it is also a left eigenvector of S. Thus the set of eigenvalues of T and S are identical. Since

the velocity gradient tensor T is traceless (incompressibility constraint), it is clear that tlie

sum of eigenvalues of T, and therefore of S, must be 0. Thus, since there is an eigenvalue (r

with a strictly negative real part, there must exist some other eigenvalue .X with a positive

real part. If _' is a nonzero vector of S in the subspace corresponding to eigenvalue )_, it

follows that if #(to) = (, then

C(t) = @_(t-to) (49)

Thus, clearly there exist disturbances for which C and therefore p-'(x-'o(t), t) grows exponen-

tially as t --+ oo. Note that the choice made in (49) is perfectly consistent with tile Condition

= 0that followsfrom (37), since (and (are left and righ t eigenvectors of S correspond-

ing to differing eigenvalues a and _. Our proof that fi(_o(t), t) grows exponentially in t wheli

aT0(t) approaches :g, requires that (.( # 0. In the unusual case when tliere is no eigenvector

of T + with this property, a modified analysis is required by choosing a purely imaginary

vector (in the subspace corresponding to the

with a negative real part must be complex in

eigenvalues er and a* (Note that eigenvalues

this case). Then, the tensor elements ,5'jk in

(48) will not be constants but are periodic in time. In that case, we have been unable to

show in any elementary way that C(t) must grow with thne, though we expect this to be

the case.

Note, however, that for two-dimensional disturbances superposed on a two-dimensional

flow with a stagnation point, C(t0) must necessarily be aligned along the xa axis, which is

an eigenvector of T corresponding to eigenvalue 0; therefore, it cannot be chosen to be (.

Indeed, for two dimensional disturbances, tlle terms On the right hand side of (38), which

arise fi'om vortex stretching, are absent and C7 is a constant.

From (24), it is clear that at tile stagnation point £_, d(£_, t) = d(£,, 0). Thus if d(£,, O)

is chosen sufficiently small, each of f, f/if, f2f"/f '2 appearing in (25) is going to be uni-

formly small. Thus, it seems plausible that as aT0(t) approaches £, and p-'(Xo(t),t) grows

10
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exponentially in time,/7(i',, t) (and hence the disturbance vorticity f'(d)ig(J,, t)) will grow.

However, the mathematical proof of this statement is far from obvious for a general flow,

where/Y is determined by the nonlinear equation (25). However, in the Appendix, under

some additional assumptions which appear reasonable, we are able to show that exponential

growth of/7(aT0(t), t) does correspond to a growth of disturbance vorticity 05D = f'(d)i_ at _

for a steady flow where Vff, is a constant and asp is small enough to permit linearization.

We expect that the connection actually transcends these restrictions, though we have not

succeeded in proving this.

Based on the arguments in this section and the results in the Appendix, we present the

following conjectures.

Conjecture 1

A sufficient condition for the absolute instability of a smooth steady Euler flow in a

periodic or unbounded domain is that a singularity moving in the complex plane according

to (27) has the property that as t --+ 0% :_o(t) _ 2"_ for a real :_,, where lm aT0(0) -¢ 0.

This condition is equivalent to the existence of a stagnation point a_s, where the velocity

gradient tensor T has at least one eigenvalue with a negative real part. In that case, the

vorticity at 2_ will grow in time.

Remark I

The above conjecture is only a sufficient condition for instability, though not necessary,

as shown in a later example. This is because only specific forms of disturbances have been

chosen- namely, those associated with a specific singularity structure in the complex plane.

Remark 2

There is no restriction on the size of the disturbance, though there is a restriction on

its form. Nonetheless, we do not expect this to be useful in uncovering nonlinear instability

of flows which are linearly stable since the condition for approach of singularities is equally

valid for linearized equations.

Remark 3

Arbitrary disturbances in the conjecture refer to any arbitrary disturbance in three dhnen-

sions, although the steady flow can be two-dimensional. For two-dimensional disturbances

superposed on two-dimensional flow, the approach of a complex singularity can be associ-

ated with the growth of the gradient of vorticity only. This can be seen by just taking the

gradient of the scalar vorticity equation and evaluating it at the stagnation point, which

leads to d dt = TC, where C = Vco(_-,, t), and T is the two-dimensional velocity gradient

tensor at the stagnation point.

Remark

This conjecture can be applied to any steady state flow - even ones that are numerically

II



determined - once the deformation tensor T at a stagnation point is obtained.

Conjecture 2

A steady flow is unstable in the Langrangian sense if there exists a c!loice of initial

conditions x(0), #(0), A(0) and (J(0) such that the solution to (29), (30), (40) and (42) have

the feature that as t ---, oc, # --+ 0 tf and C(t) _ co.

In the following subsections, we present examples of the application of Conjecture 1 to

specific simple Euler flows. Conjecture 2 appears to be harder to apply; at this point, it is

not clear to us how this can be applied in a fruitful manner.

3.1 Elliptical Flows

We first consider the case of plane strain in an infinite flow domain with the velocity field

with a >

o) = 7 x2, o) (50)

0. Then according to (27), a singularity at _0 = (z,,x2,xa) moves according to

dxl

d-V" = _x, (51)

Hence

dx2

dt - -ax2 (52)

dx3
=0 (53)

dt

X, = X1(0)¢ c_t , X 2 ---- X2(0)_: -c_t, X 3 = X3(0 ) (54)

from which it is clear that if we choose Re xj(O) = 0 for 1 < j _< 3 and Im Xl(0 ) =

Im x3(0) = 0, then _0(t) --+ 0 as t + co. According to Conjecture 1, the flow is going

to be unstable in the absolute sense. This is in accordance with established results from

hydrodynamic stability theory (see Pearson 12, Lagnado et al la and BayleyH).

The relation of the approach of a complex singularity to the appearance of increasingly

small scale structures is highlighted by the following perturbation of our straining flow:

l_(a_,O) _-_ (_X 1 "-1- f(x2),--aX2,0) (55)

for an arbitrary nontrivial differentiable function f.

solution** given by

_(X, _) = [C_X 1 --[- e-_'tf(x2e"t),-ax2,0]

, Reca|| e0(0 = _(0 + i_(t)
**This is probably well known; however, we could not find a specific reference

In this case, there is a simple exact

(56)
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with the corresponding two-dimensional vorticity

co = -f'(x2e _') (57)

Note that if the function f has a singularity in the complex plane, it approaches tile physical

domain as t -_ cx). For instance if

l (5s)
f(x2)- 1+

then from (55) and (56), it follows that the singularity of w and ff is located at x2 = i e -_t

which approaches zero as t _ oc. In this case, with a two dimensional disturbance super-

posed on a two dimensional flow, the approach of a complex singularity does not correspond

to growth of vorticity; however, as expected from Remark 3, the gradient of vorticity grows

exponentially with time. The solution form (57) in the physical domain clearly corresponds

to transfer of energy to smaller scales near x: = 0, though the energy contained at any

specific scale eventually decreases with time. The similarity variable e_tx2 in (56) could have

been predicted by looking at the solution (54) in the complex plane. Note that hn x, and

hn x2 need not go to zero for all initial conditions in order for Conjecture 1 to hold. Indeed,

there exist initial conditions when singularities move further away from the real domain

which corresponds to a reverse cascade: energy transfer from smaller scales to larger scales.

This can also be seen in terms of exact solutions to the Euler equation of the form (56) when

the initial perturbation velocity involves the second component rather than the first.

Three-dimensional generalizations of the above straining flow can be made for which the

velocity is given by

ff_ = (ax,,/3x2, 7x3) (59)

1 corresponds to the axisymmetricwhere a+fl+7 = 0 due to (l 1). The case of fl = 7 = -_a

expansion/contraction which has been studied extensively in the turbulence literature. As

7 --_ 0, the plane strain case considered earlier is recovered. Here, we show how to apply

Conjecture 1 in its simpler form. The velocity gradient tensor corresponding to (59) is

o_ 0 0)
T= 0/30

0 0 7

(60)

The eigenvalues of (60) are c_,/3 and 7 - at least one of which is negative due to the incom-

pressibility constraint c_ +/3 + 3' = 0. Hence, according to Conjecture 1, the flow is unstable

in accordance with results from hydrodynamic stability (see Pearson 12 and Townsend15). We

will apply Conjecture 1 to the remaining elliptical flows to be considered with this simple

eigenvalue test.

13



Plane strain plus rotation in an infinite flow domain correspondsto the baseflow

ffs= (e_z,- fix2, f_a:,- c_z2, 0) (61)

This physically corresponds to a plane strain (with strain rate c_) combined with a solid body

rotation (with angular w']ocity f_) in tile plaine of the strain. The velocity gradient tensor

corresponding to this flow is

a -ft O)
T= a o (62)

0 0 0

The eigenvalues of (62) are 0, v/a 2- _2 and -x/'a 2- _2 and, hence, one of them has a

negative real part if c_2 > f_2. Consequently, according to Conjecture 1, this flow will be

absolutely unstable when

a2- F? > 0 (63)

This result is consistent with recent stability analysis of elliptical flows (see Bay]ey TM and

Craik and Criminale16). Since Conjecture 1 only provides a sufficient condition for instability,

it does not formally apply when _2 > c_2. Nonetheless, it is interesting to note that f_2 > c_2

is actually an established condition for tile stability of this flow (see Bayley14).

We now consider the base flow

ffs = (-q'x2 -- 2f_z2,2aXl,0) (64)

which serves as a model for uniform shear flow subject to a system rotation with angular

velocity f_ (see Batchelorll). Uniform shear flow is recovered in the limit f_ --+ 0. The

velocity gradient tensor T here is given by

0 S-2f_ 0)
T = 2a 0 0 (65)

0 0 0

The eigenvalues of (65) are 0, _/2f_(,_¢- 2Ft) and -V/2a(S - 2ft). Hence, according to Con-

jecture 1, this flow is unstable if

2fl(5'-2a) > 0 (66)

since this condition guarantess the existence of a real negative eigenvalue. In terms of tile

n (1- 2-_) first introduced by Bradshaw lr, it isrotational Richardson number Ri = -2-g

clear that according to Conjecture 1, the flow is unstable if

Ri < 0 (67)

This result is identical to that obtained previously by more complicated linear stability

analyses (see Lezius TM and Lezius and Johnston19).

i
i
i
i
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For a uniform shear flow, Ri = 0 and, therefore, Conjecture I is not useful ill determining

the stability or instability of tile flow. The same is true for the more general case of plane

shear flows where

if, = (f(w2), 0, 0) (68)

Of course, it is well known that uniform shear flow is weakly unstable; the kinetic energy of

infinitesimal disturbance grow linearly with time 13a5. The necessary and sufficient condition

for a general plane shear flow (68) to be unstable is for f'(x2) to change sign - the classical

inflexion point theorem of Rayleigh.

3.2 Kelvin-Stuart Cat's Eye

This class of exact steady solutions to the Euler equation has been presented by Stuart 2°.

Without any loss of generality, his solution for the stream function • can he written as

where 0 < p

in this case is given by

1

_P(x,,z2) = -_ In [cosh (2 x.a) + p cos (2 x,)] (69)

< 1 is a constant characterizing the family of solutions. The velocity field G

sinh 2x2ff_ = cosh 2x2 + p cos 2x, '
p sin 2x, O"_ (70)

cosh 2x2 + p cos2x, J

Within a period rr in Xl, there are two distinct stagnation points at (0, 0) and (._, 0).

(_, 0) the velocity gradient tensor T is given by

At

(
0 l-p

T= _2; 0 0 (71)
1--p

0 0 0

The eigenvalues of this tensor are 0, 2ip_/2/(1 - p) and -2ip_/2/(1 - p), none of which have

a negative real part. Conjecture 1 is therefore not applicable and nothing can be deduced

about the stability from the existence of this stagnation point. However, at the stagnation

point (0, 0), the velocity gradient tensor is

T

0 2 0

l+p

2p 0 0
l+p

0 0 0

(72)

The eigenvalues of this tensor are 0, -2p'/2/(I + p) and 2p'/2/(1 + p), one of which is real

and negative. Hence, according to Conjecture 1, the Kelvin-Stuart Cat's Eye is unstal)le.

This agrees with the findings of Pierrehumbert and Widnal121.
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4. CONCLUDING REMARKS

We have considered the motion of a specific type of singularities of the incompressible

three dimensional Euler equation in the complex spatial domain that correspond to a smooth

variation in the real domain. Under tlle assumption that there is a class of initial conditions

where no new singularities form in the real or complex domain other than what is present

initially, we have derived an equation (namely, Eq. (27)) for the trajectory of a singularity

and have shown that such a singularity cannot impinge the physiCaidomain in finite time.

Nonetheless, we expect that the approach of these singularities towards the physical domain

will correspond to the formation of small scale structures therein, where the neglected viscous

effects would be important. The sensitivity of these small scale features to initial conditions

in the physical domain can then be traced to the problem of determination of the initial

singularity location in tile complex plane from finite precision data in the real domain.

Furthermore, from (27), we note that the problem of determining the singularity trajectory

is the complex equivalent of determining fluid particle trajectories in the real domain, once

an Eulerian flow field is determined. In such cases, "Langrangian chaos" is a well-known

phenomena. Thus, we speculate that the theory of dynamical systems may be relevant to

describing chaotic complex singularity trajectories, which could have a bearing on turbulence.

As far as the hydrodynamic stability of steady flows is concerned, we have introduced

two new conjectures that connect the complex singularity motion with tlle growth of a

disturbance in the real domain. Admittedly, more theoretical work is necessary to put these

conjectures on a firm foundation. Nonetheless, the application of Conjecture 1 to specific

examples that include the class of elliptical flows and the Kelvin-Stuart Cat's Eye give

results in agreement with previously determined results. Though no new instabilities have

been discovered so far, tlle ease and simplicity with which these results have been found is

certainly encouraging. Indeed, as mentioned before, Conjecture 1 can even be be applied to

a numerically determined smooth steady Euler flow provided there is at least one stagnation

point where the velocity gradient tensor has an eigenvalue with a negative real part.

So far, we have only considered the stability of Euler flows with no boundaries. We do

not expect boundaries to alter the statement of Conjecture 1 - provided that the stagnation

point is in the interior of the domain - since the instability mechanism associated with the

approach of a complex singularity is associated with small scale disturbances in the real

domain. This issue will be the subject of a future study.
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APPENDIX

In Section 3, it has been shown that if tile velocity gradient tensor T at a stagnation

point :r's (taken to be zero without any loss of generality) has an eigenvalue cr with a negative

real part, then there exists a singularity trajectory approaching the stagnation point such

that, for sufficiently large t, the singularity trajectory 2"0(t) asymptotes to

Co(t)= e0(to) (A1)

In that case, it was shown that p_(£o(to),to) can be chosen such that for sufficiently large t,

/7(_o(t),t) asymptotes to

/7(2o( t), t ) = eA(*-t°) fi( 2o( to ), to) (A2)

where )_ is an eigenvalue of T with positive real part.

The purpose of this Appendix is to show that the exponential growth of/7 in time (as

in (A2)) at the moving singular point _0(t) that approaches the origin (i.e. the stagnation

point, as in (A1)) corresponds to a growth of the disturbance vorticity a3D = f'(d)/7 at the

origin. Here, we only do so for the case when the the velocity gradient tensor at every point is

T, a constant. We further assume that the disturbance is small enough so that the following

linearized equations hold

0g-----2-D+ G" V_. + ffD ' Va3_ = a_D ' VG + a3_ • VffD (A3)
Ot

with

where fro = f(d) _.

We introduce new variables,

V x fu = U3D (A4)

V. gO = 0 (AS)

_e -_'(t-_°) =_7 (A6)

ea(t-t°)_ D --_ W (A7)

Then, with the assumption of constancy of Vff_ = T (and therefore of _3_), we have

l_t - crW - a]_. Vyl_ + T) v. Vyl_ = TI_ + _3_. VyffD (A8)

Vy x ffD = IV (A9)

Vy • ffD = 0 (A10)

where the subscript Y denotes a derivative with respect to the )_ components.
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Equations (A8) - (A10) are linear equationswith no explicit time dependence.Assuming

that the eigenvectorscorrespondingto the linear stability operator form a complete set,
the large t behavior of the solution for a generic initial condition can be expected to be

dominated by the least stable (or most unstable) eigenvector times eat (multiplied at best

by a polynomial in t) where 6 is the eigenvalue with the largest real part. The analytical

continuation of such a solution to the complex plane will have similar time dependence. Thus,

according to this argument, the time dependence of 1_ at a fixed complex IP = _x-'o(to) can

only be of the form e5t (multiplied at best by a polynomial in t).::

However, for the specific initial condition discussed in Section 3, that leads to (12), it

follows from the transformations (16) and (17) that the time dependence of _V(c_£o(to),t)

is of the form e (A+')_. This growth rate (or decay rate if Re (._ + o') < 0)) cannot exceed

(or have a decay rate less than) e 6t times a polynomial in t. Thus, Re _5 >_ Re( ._ + er)

implying that for a generic non-zero choice of 1_(0, to), the growth rate of !¢P(0, to) will equal

or exceed eR¢(:_+°)t. From transformation (A7), it follows tllat a3D(0, t) will then grow at a

rate at least equaling eR_:_, implying absolute instability.
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